

ELECTROCHEMICAL PERFORMANCE TESTING

P. PREZAS, D. ROBERTSON, J. BASCO, AND I. BLOOM

Argonne National Laboratory

Project ID: ES201

This presentation does not contain any proprietary, confidential, or otherwise restricted information

June 2016 Washington, DC 2016 DOE Annual Merit Review

OVERVIEW

Timeline

- Facility established: 1976
- End: Open this is an on-going activity to test/validate/document battery technology as technologies change and mature

Budget

- DOE Funding FY16: \$1.8 M
- FY15: \$2.0 M
- FY14: \$2.3 M

Barriers

- Performance (power and energy densities)
- Cycle life (1,000-300,000 depending on application)
- Calendar life (15 y)
- Low-temperature performance

Collaborations

- US battery developers
- Idaho National Laboratory, Sandia National Laboratories
- CATARC (China)
- Purdue Univ., Battery Innovation Center

RELEVANCE

Objective

- To provide DOE and the USABC an independent assessment of contract deliverables and to benchmark battery technology not developed under DOE/USABC funding
- To provide DOE and the USABC a validation of test methods/protocols
- To develop methods to project battery life and to use these methods on test data

Approach

- Apply standard, USABC testing methods in a systematic way to characterize battery-development contract and benchmarking deliverables
- Characterize cells, modules and packs in terms of:
 - Initial performance
 - Low temperature performance/Cold cranking
 - Cycle life
 - Calendar life
- Compare test results to DOE/USABC goals
- Adapt the test facility hardware and software
 - to accommodate programmatic need
 - to accommodate the unique needs of a given technology and/or deliverable

PROGRAM MILESTONES

Milestone	Date	Status
Submit quarterly reports to DOE and USABC	12/31/15	Complete
Submit quarterly reports to DOE and USABC	3/31/16	Complete
Submit quarterly reports to DOE and USABC	6/30/16	On track
Submit quarterly reports to DOE and USABC	9/30/16	

TECHNICAL ACCOMPLISHMENTS: PROGRESS AND RESULTS – TESTING CONTRACT DELIVERABLES

- Test deliverables are mostly cell-oriented and include developments in
 - Lithium-ion battery chemistry (graphite anodes)
 - Silicon anodes
 - Battery recycling

- Lithium metal anodes
- Separators
- Advanced cell chemistries (beyond Li-ion)
- Deliverables are characterized in terms of initial capacity, resistance, energy and power. They are then evaluated in terms of cycle and calendar life for the given application
- Results are used to show progress toward meeting DOE/USABC initial commercialization goals

PROGRESS AND RESULTS – TESTING CONTRACT DELIVERABLES

Developer	Sponsor	Level	Quantity	Rated capacity, Ah	Application	Status
	USABC	Cell	9	27	PHEV-20	on-going
	DOE FOA	Cell	18	15	PHEV-20	on-going
JCI	DOE FOA	Cell	4	15	PHEV-20	on-going
	DOE FOA	Cell	23	3	PHEV-20	on-going
	DOE ARRA	Cell	18	6.8	HEV	complete
	USABC	Cell	30	2.2	12-V S/S	on-going
Leyden	USABC	Cell	20	20	12-V S/S	complete
	USABC	Pack	3	40	12-V S/S	complete
	USABC	Cell	6	0.357	12-V S/S	on-going
Maxwell	USABC	Module	15	40	12-V S/S	on-going
	USABC	Cell	15	0.357	12V S/S	on-going
24-M	USABC	Cell	6	0.79	EV	on-going
∠4-1VI	DOE	Cell	10	4.3		on-going
Xerion	USABC	Cell	21	0.92	PHEV-20	on-going
Optodot	DOE FOA	Cell	9	2.1	EV	complete
	DOE FOA	Cell	18	1.7	EV	complete
	DOE FOA	Cell	6	2.7	EV	complete
3M	DOE FOA	Cell	15	2.7	EV	complete
	2013 ABR	Cell	10	2.1	EV	complete
	2013 ABR	Cell	12	2.88	EV	on-going
Navitas	DOE FOA	Cell	24	14	EV	on-going
Navitas	DUE FUA	Cell	13	2+4	EV	complete
Tiax	2013 ABR	Cell	13	1.8	EV	on-going
ANL (J. Zhang)	DOE	Cell	15	0.16	EV/PHEV	on-going
Seeo	DOE	Cell	4	11	EV	on-going
	DOE	Cell	2	2.2	EV	complete
	USABC	Module	3	11	EV	complete
LG Chem	DOE	Cell	10	25.9	PHEV-40	on-going
XALT	USABC	Cell	24	95	EV	on-going
Wildcat	DOE	Cell	20	6 1.7	EV	on-going

 Test deliverables come from many developers

PROGRESS AND RESULTS – COLLABORATIVE US/CHINA PROTOCOL COMPARISON

- Battery testing is a time-consuming and costly process
- There are parallel testing efforts, such as those in the US and China
- These efforts may be better leveraged through international collaboration
- The collaboration may establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data
- In turn, the collaboration may accelerate electric vehicle development and deployment
- There are three steps in the collaborative effort

Step	Status
Collect and discuss battery test protocols from various organizations/countries	Complete
Conduct side-by-side tests using all protocols for a given application, such as an EV	Complete
Compare the results, noting similarities and differences between protocols and	Complete; open-literature paper published
test sites 7	Argonne 📤

CONDUCT SIDE-BY-SIDE EXPERIMENTS

- A test plan based on an EV application was written and agreed to
- Commercially-available batteries based on LiFePO₄ and carbon were procured. The batteries were distributed to ANL, INL* and CATARC (China)
- Initial similarities and differences
 - The US cycle-life aging protocol consists of a dynamic, constant-power profile and constant-current charging
 - The Chinese cycle-life aging protocol consists of constant-current discharges and charges
 - USABC Reference Performance Test consists of 2 capacity cycles, peak power pulse test at 10% DOD increments and full DST cycle. The cells are characterized using these performance tests every 50 cycles
 - China Reference Performance Test consists of 1 capacity cycle and 10 second discharge pulse at 50% DOD. The performance of the cells were characterized using these performance tests every 25 cycles
 - Both cycle-life protocols terminate discharge at 80% DOD

^{*}Jon Christophersen, Taylor Bennet

COMPARING THE PROTOCOLS SHOWS...

	USABC	China
DOD (Energy) Window	0-80% DOD	0-80% DOD
Temperature	25 °C	25 °C
Capacity measurement rate	C/3	C/3
End of Test criteria	80% degradation	80% degradation
Cycle Type	Dynamic, Power based	Constant-current
	Peak Power Pulse	Pulse Power Density
Power Capability Measurement	Estimation at 80% DOD	at 50% DOD
Pulse duration	30 seconds	10 seconds
Pulse Current	75A	225A
RPT Frequency	50 cycles (10.5 days)	24 cycles (6 days)
RMS power of cycle	50-51 W	12-13 W
RMS current of cycle	15-16 A	3.5-4 A
Average Voltage of cycle	3.17V fading over time	3.27V without fading
Energy throughput of cycle	27 Wh	19.5 Wh

DISTRIBUTION OF CELLS AND INITIAL CHARACTERIZATION

■ Since the QC/T method uses resistance at 50% DOD (10 s) as a metric, resistance from the USABC method was calculated at 50% DOD (10 s), 50% DOD (30 s), 80% DOD (10 s) and 80% DOD (30 s) to facilitate comparison

Average performance parameters measured by using two protocols.

Protocol	Parameter Parameter	Average value (s.d.)
USABC	C/3 capacity, Ah	7.46 (0.09)
	Resistance at 50% DOD (10 s), mΩ	3.97 (0.04)
	Resistance at 50% DOD (30 s), mΩ	4.71 (0.04)
	Resistance at 80% DOD (10 s), mΩ	5.41 (0.10)
	Resistance at 80% DOD (30 s), mΩ	7.45 (0.12)
QC/T 743 (no pulse)	C/3 capacity, Ah	7.74 (0.06)
QC/T 743	C/3 capacity, Ah	7.62 (0.12)
(pulse)	Resistance at 50% DOD (10 s), mΩ	3.46 (0.03)

- Differences in pulse width and magnitude affected results
 - Degree of electrode polarization and mass/charge transfer effects

CAPACITY FADED WITH CYCLING

 Average loss in cell capacity appeared to be linear with time and increased at the same approximate rate, within experimental error (±2σ)

CELL RESISTANCE: %DOD AND PULSE WIDTH

 Using data from USABC protocol, as expected, the 10-s values were lower than the 30-s ones

CELL RESISTANCE INCREASED WITH CYCLING

- %DOD and pulse-width affect apparent mechanism of resistance increase
 - 50% DOD, 10- and 30-s: resistance increase follows a·t rate law
 - 80% DOD. 10- and 30-s: resistance increase follows $a \cdot t + b \cdot t^{1/2}$ rate law

APPARENT RESISTANCE INCREASE MECHANISM IMPACTS ESTIMATED LIFE

30% increase in resistance was used as end-of-life metric

Protocol and metric parameters	Estimated life, days
USABC (50% DOD, 10 s)	536.67
USABC (50% DOD, 30 s)	372.21
USABC (80% DOD, 10 s)	178.50
USABC (80% DOD, 30 s)	168
QC/T 743 (pulse)	510

- There was a large difference in estimated life using usual %DOD and pulse widths between the USABC and the QC/T 743 protocols
- With the right combination of tests and metric points, the two protocols produce similar results
- The results described here provide a starting point for a discussion between the two groups

PROGRESS -- PROTOCOL VALIDATION/EFFECT OF FAST CHARGE

- With further vehicle electrification, customers would desire battery charging to take the same amount of time as refueling an ICE does at a service station. This does not have to be a full charge
- The Fast Charge Test in the USABC EV Manual² determines the impact of charging a battery from 40 to 80% SOC at successively faster rates, starting from about twice the overnight rate. Since the manual was written for Ni/MH technology, the ideas were adapted for the higher-performing, lithium-ion cells
- Commercial, 18650-sized lithium-ion cells, consisting of NMC-based chemistry, were chosen

COMPARE FAST-CHARGE AND CONSTANT-CURRENT PROFILES

- Two tests
 - Fast-charge (FC) and constant-current (CC)
 - RPTs (C/1 capacity and EV Peak Power Test) every 100 cycles

The segments represent (a) C/3 charge to 100% SOC; (b) 30-min rest; (c) C/3 discharge to 40% SOC; (d) fast charge to 80% SOC; and (e) C/3 discharge to 0% SOC. The fast-charge step shown in this particular profile used twice the simulated overnight rate, 2C/3.

CELL RESISTANCE CHANGED DURING THE TESTS

- Since time base is ambiguous, how should the resistance data be presented?
 - Total cycle time or cumulative charge time

CC data appears to show faster resistance increase

CELL RESISTANCE CHANGED DURING THE TESTS (CONTINUED)

Here, FC results appear to increase faster than CC, the direct opposite of the previous plot

PLOTTING ΔR VS. R_{N-1} REMOVES AMBIGUITY

■ From the slopes of lines, fast-charging causes resistance to rise faster

...WHICH IS CONSISTENT WITH POST-TEST RESULTS

• More delamination seen on the anodes of FC cells

SUMMARY AND FUTURE WORK

Summary

- Hardware deliverables from many sources have been tested at Argonne and continue to be evaluated for a variety of vehicle applications
- This testing directly supports DOE and USABC battery development efforts
- The US/China Protocol Comparison has shown
 - There are similarities and differences in the test protocols
 - With similar metric points, the results are comparable
- The results of the fast charge test have shown that cell heating at high charge rates is the main cause of resistance increase. This result may have practical implications

Future Work

- Continue to support the DOE and USABC battery development efforts by performing unbiased evaluations of contract deliverables, using standardized test protocols
- Start the next experiment with the Chinese on fast-charging LiFePO₄-based cells

The work at Argonne National Laboratory was performed under the auspices of the U.S Department of Energy (DOE), Office of Vehicle Technologies, under Contract No. DE-AC02-06CH11357. The program manager was Brian Cunningham.

